Notation and Definitions

A function from a set A to a set B (written as $f: A \rightarrow B$) defines a rule which assigns to each $x \in A$ a unique element $y \in B$.
The element y is called the image of the element x and we write $y=f(x)$.

If either the rule f or the set A or the set B are changed, then we will consider it a different function.

- When A and B are sets of real numbers, we can draw the graph of the function

Example:

Example.

Not a function.

$$
\begin{aligned}
& f: A \rightarrow B \\
& \tilde{A}=\{a, c\} \\
& \text { is } f: \tilde{A} \rightarrow B \text { a } \\
& \text { function? yes }
\end{aligned}
$$

Example.

$g: A \rightarrow B$ is not a function.

$$
\begin{aligned}
& \tilde{B}=\{a, b, c\} \\
& g: A \rightarrow \tilde{B}
\end{aligned}
$$

is a function

Example

Example

Example

Let $f: A \rightarrow B$ and $S \subseteq A$. We define the set

$$
f(S)=\{f(x): x \in S\}
$$

$f(s)$ is called the image of S under f. a set

$$
y=f(x)
$$

an element

Let $f: A \rightarrow B$. The set A is called the domain of f and $f(A) \subseteq B$ is called the range of f.

Example

Example

Definition
A function is infective, or one-to-one, if for every pair of numbers $x_{1} \neq x_{2}$ we have $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. If a function is infective, the equation $y=f(x)$ has either no solution or a unique solution.

Example

$$
\begin{aligned}
& 1=f(x) \\
& x=a, x=b
\end{aligned}
$$

$a \neq b$ but $f(a)=f(b)$

Not injective.

Example

f

$$
\begin{aligned}
& y=f(x) \\
& 3=f(x) \quad \text { No solution } \\
& 1=f(x) \quad x=b \\
& 2=f(x) \quad x=a \\
& 4=f(x) \quad x=c
\end{aligned}
$$

It is injective

Example

$$
\begin{gathered}
x^{2}=1 \\
x=-1, x=1
\end{gathered}
$$

Not infective

Example

$$
f(x)=5 x+3 \quad \text { bijective. }
$$

For any specific value of $y \in \mathbb{R}$,

$$
x=\frac{y-3}{5}
$$

Injective.

Definition
A function $f: A \rightarrow B$ is surjective, or onto, if $f(A)=B$. If a function is surjective, the equation $y=f(x)$ always has at least one solution for each $y \in B$.

Example.

Injective: No Surjective-yes

Example

$$
y=f(x)
$$

Injective: yes
Surjective: No
$\rightarrow f: A \rightarrow \widetilde{B}$ where $\tilde{B}=\{a, b, c\}$

$$
\begin{aligned}
& a=f(x) \quad x=1 \\
& b=f(x) \quad x=2 \\
& c=f(x) \quad x=3 \\
& \rightarrow d=f(x) \text { No solutim }
\end{aligned}
$$

Example

$f: \mathbb{R} \rightarrow \mathbb{R}$ Injective No
$-5=x^{2} \quad$ Surjective No
$f: \mathbb{R} \rightarrow[0,+\infty)$ surjective yes $y=f(x)$
Example:

$$
0=\frac{1}{x}
$$

 $f: \mathbb{R} \rightarrow \mathbb{R}$ Surjective: No ? $f: \mathbb{R},\{0\} \rightarrow \mathbb{R}$ surjective.No - $f: \mathbb{R},\{0\} \rightarrow \mathbb{R},\{0\}$ surjective bijective.

$$
y=x^{3}
$$

Definition
A function is bijective if it is both infective and surjective.

If a function is bijective, the equation $y=f(x)$ always has a unique solution for each $y \in B$.

Definition
A function is periodic if there exists some $c>0$ such that $f(x+c)=f(x)$. The smallest such c is referred to as the period of the function.

Definition
A function is even if $f(-x)=f(x)$.
A function is odd if $f(-x)=-f(x)$.

Definition
A function is bounded if there exists some $M>0$ such that $|f(x)| \leq M$ for all x in its domain.

Definition
A function is montonically increasing if for every x, y in its domain such that $x<y$ it satisfies $f(x) \leq f(y)$, and monotonically decreasing if $f(x) \geq f(y)$.

We say that it is monotonic strictly increasing/decreasing if the inequalities are strict.

Elementary Functions

$$
\ln e^{x}=x
$$

See summary in AV.
Combining functions
For $\quad f, g: A \rightarrow \mathbb{R}$,

$$
\begin{aligned}
& \cdot(f+g)(x)=f(x)+g(x) \quad(x \in A) \\
& \cdot(\lambda f)(x)=\lambda f(x) \quad(x \in A, \lambda \in \mathbb{R})
\end{aligned}
$$

$$
\begin{aligned}
& (f g)(x)=f(x) g(x) \quad(x \in A) \\
& (f \mid g)(x)=\frac{f(x)}{g(x)} \quad(x \in A, g(x) \neq 0)
\end{aligned}
$$

For $g: S \rightarrow T$ and $f: T \rightarrow \mathbb{R}$, we $\&$ define $f \circ g: S \rightarrow \mathbb{R}$ by

$$
\begin{array}{ll}
f \circ g(x) & =f(g(x)) \quad(x \in S) \\
e^{\ln x,} & f=e^{x}: \mathbb{R} \rightarrow(0,+\infty) \\
\ln e^{x}, & g
\end{array} \quad f(g \ln x:(0,+\infty) \rightarrow \mathbb{R} \quad l
$$

Example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\frac{x^{2}-1}{x^{2}+1} \quad x^{2}+1=0
$$

and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
g(x)=x^{3}
$$

$(f \circ g)$ and $g \circ f \quad f \circ g \neq g \circ f$

$$
f \circ g(x)=f(g(x))=\frac{(g(x))^{2}-1}{(g(x))^{2}+1}=\frac{x^{6}-1}{x^{6}+1}
$$

$$
g \circ f(x)=g(f(x))=(f(x))^{3}=\left(\frac{x^{2}-1}{x^{2}+1}\right)^{3}
$$

Inverse functions

- We say that f^{-1} is the inverse function to $f: A \rightarrow B$ if f^{-1} is a function from B to A which has the property that $x=f^{-1}(y)$ if and only if $y=f(x)$.

$$
I_{d(x)}=x=f^{-1}(f(x)) \quad I_{d}(x)=x
$$

Not all functions have an inverse. In fact, f has an inverse if and only f is bijective.

Example. Consider the function

$$
\begin{aligned}
& \left.f(x)=\frac{x-1}{x+1} \quad \text { Domain: } \mathbb{R} \cup\{-1\}\right) \\
& \begin{aligned}
& f(x)=y=\frac{x-1}{x+1} \rightarrow y(x+1)=x-1 \\
& x y+y=x-1
\end{aligned} \\
& f(-1) x \quad x y-x=-y-1 \\
& x(y-1)=-y-1 \\
& x=\frac{-y-1}{y-1}=f^{-1}(f(x)) \\
& f^{-1}(x)=\frac{-x-1}{x-1}
\end{aligned}
$$

Domain $f^{-1}=$ Range f

$$
\mathbb{R} \backslash\{1\}
$$

$$
\begin{aligned}
f^{-1}(f(x)) & =\frac{-f(x)-1}{f(x)-1}=-\frac{\left(\frac{x-1}{x+1}\right)-1}{\frac{x-1}{x+1}-1} \\
& =\frac{\frac{-(x-1)-(x+1)}{x+1}}{\frac{x-1-(x+1)}{x+1}} \\
& =\frac{-x+1-x-1}{x-1-x-1}=\frac{-2 x}{-2}=x \\
1=\frac{x-1}{x+1} & \Rightarrow \not x+1=\not x-1 \Rightarrow 1=-1 x
\end{aligned}
$$

$$
1=f(a)
$$

if and only if

$$
\begin{aligned}
& a=f^{-1}(1) \\
& 4=f(x)
\end{aligned}
$$

if and only if
$x=f^{-1}(4)$

$$
\begin{aligned}
& e^{x}: \mathbb{R} \rightarrow(0,+\infty) \quad 0=e^{x} \\
& \rightarrow y=e^{x} \\
& \ln x:(0,+\infty) \rightarrow \mathbb{R}
\end{aligned}
$$

Post chapter 2 problems in AV.

